
www.manaraa.com

1

Cluster Computing Supported by Relational
Database Management Systems

(A Case Study)
Gerd Heber, Paul Stodghill and David Lifka

Abstract— Relational database management systems are
probably the most mature standard enterprise software.
They are largely but unjustly ignored by the scientific com-
puting community. In this paper, we highlight some of the
advantages of using databases over traditional file-based ap-
proaches, the greatest advantage being their ability to elim-
inate details of the physical layout of the data from an appli-
cation. Their value in building component-based distributed
applications that involve large datasets can hardly be over-
estimated. We illustrate our point by discussing how we
have re-engineered an existing large simulation system for
fracture mechanics to use databases instead of files. We
have found that our new implementation is more flexible
and featureful without sacrificing performance. Because of
this, we are in a position where many of our components can
be deployed as Web services with little additional effort.

I. Introduction

The Adaptive Software Project [1], or ASP Project, is a
multi-disciplinary, multi-institutional collaboration whose
objective is to develop adaptive techniques and codes for
scientific computing. At a high-level, our goal is to develop
applications, algorithms, and systems that allow simulation
codes from a number of scientific disciplines to be easily
brought together to solve coupled problems. For instance,
we are currently working on a demonstration problem that
simulates the exhaust of a rocket engine passing through a
cryogenically cooled pipe. This demonstration problem has
been developed from a real world experimental problem,
and calls for a combined chemically reacting fluid-flow, heat
transfer, and fracture mechanics simulation.

In order to bring each of these components together into
a single simulation, we are faced with a number of chal-
lenges. The components of this simulation are being de-
veloped independently at each of the participating insti-
tutions. These components are being developed, or, in
many cases, have already been developed, by computa-
tional scientists from a number of different disciplines, in-
cluding physics, aerospace engineering, structural mechan-
ics, mathematics, and computer science. They are being
deployed onto a number of different operating systems and
architectures.

This research is partially supported by NSF grants EIA-9726388,
EIA-9972853 and ACIR-0085969.

G. Heber, 638 Rhodes Hall, Ithaca, NY 14853, USA. E-mail:
heber@tc.cornell.edu. Phone: (607) 255-7885. Fax: (607) 254-8888.

P. Stodghill, 496 Rhodes Hall, Ithaca, NY 14853, USA. E-mail:
stodghil@cs.cornell.edu. Phone: (607) 254-8838. Fax: (607) 254-
8888.

D. Lifka, 531 Rhodes Hall, Ithaca, NY 14853, USA. E-mail:
lifka@tc.cornell.edu. Phone: (607) 254-8621. Fax: (607) 254-8888.

The reader can imagine a number of different ways in
which this variety of implementation parameters could con-
found our efforts to build a single integrated simulation.
In this paper, we address one of these difficulties, namely
the explosion of non-problem-oriented code that we have
observed in developing our components. These codes are
primarily concerned with manipulating and transforming
data. Some of the reasons that we have had to incorporate
these codes in our components include,
• Because many of our components have been initially de-
veloped for other projects, each tends to use its own file and
data format and each component requires different reading
and writing routines to interact with these different formats
([5], [6], [8], [12], [30], [32], [33]).
• Since many of our components are designed to run on
commodity-based clusters, we have to partition data be-
tween the processors.
• Some components, such as those involved with crack
growth, require a small amount of data to be extracted
from a much larger data set.

We call these codes non-problem-oriented because they
are not directly involved with solving the physical prob-
lem at hand. Rather, they are intended to massage the
data into a form where it can be used by each component’s
computational core.

The problem with non-problem-oriented codes is that
they are very often the most tedious to implement. Be-
cause of this, we have found that we do not spend as much
effort engineering the non-problem-oriented portions of our
components as we do the problem-oriented core. We find
that the non-problem-oriented parts of our code are, brit-
tle, inflexible and not very efficient. As a result, we find
that our components, as a whole, are also brittle, inflexible
and not very efficient. One important consequence of this
is that it our components are not as readily reusable or
composable as we would like.

One approach would be to commit more resources (e.g.
manpower, money) to development. However, our re-
sources are limited and resources spent on development are
not available for science. Another approach that we have
tried is to agree on a small number of file and data formats
and then to retarget our components for these. This works
in the short-term but not in the long-term. To see this,
consider what has to happen when a new collaborator is
brought into the project. In this case, the new members
have to retarget their components for the standard for-
mats. Very often, the standard formats do not adequately



www.manaraa.com

2

meet the new members requirements, so they have to be
“tweaked”, and then the other members have to update
their components as well.

This approach fails to meet the need, because it does
not address the fundamental problem: defining fixed data
formats decreases the components’ flexibility. What we
need is a tool for data manipulation that tends to increase
the flexibility of our components. Furthermore, we want a
tool that will reduce our development costs while increas-
ing the overall quality of our components. We have found
such a tool in commercial relational database management
systems (RDBMS).

Commercial RDBMS are systems designed for general
purpose data manipulation. They are designed to allow
their users to efficiently access very large or very small
amounts of data without having to worry about how this
data is physically represented. Furthermore, they allow
each user to define new views of the data that are problem-
specific and optimized. Finally, because they are intended
for use in mission-critical, enterprise-scale applications,
they are very highly engineered and are designed to be
featureful, robust, and scalable.

In this paper, we will show how we have started to use
commercial RDBMS in place of the non-problem-oriented
codes in our components. We have found that by using this
technology, we have been able to deploy components that
are more flexible and robust. Furthermore, we have found
that our components are implemented in a fewer number
of lines of code and are just as efficient, and in some cases
more efficient, than our previous implementations.

The paper is organized as follows: In Section II we
present a brief discussion of how to make the transition
from files to databases and we describe a few database ac-
cess APIs. Section III contains a case study of a com-
putational mechanics application and preliminary results
obtained with this approach. We conclude with a few re-
marks on future work in Section IV and summarize our
findings in Section V.

II. RDBMS and Applications in Science and
Engineering

This is not an introduction to the relational model or
the SQL language. We assume a certain acquaintance with
database terminology and SQL [13], [23], [4].

Modern Relational Database Management Systems
(RDBMS) are based on the relational model [23], [4].
What makes the relational model attractive is that it elimi-
nates an application’s dependence on the physical layout of
the data and thereby eliminates most of the non-problem-
oriented code in an application. Data and referential in-
tegrity can be enforced by appropriate constraints ex-
pressed in a data definition language like SQL [4], which
also serves as a powerful data manipulation language.

The “skeleton” of a database is called its schema and
can be thought of as a collection of definitions of relational
tables. The tabular representation is not part of the re-
lational model: certain features, such as the ordinal po-
sitions of rows and columns, are meaningless in the rela-

tional model and artifacts of the representation. A table’s
columns can be viewed as attributes of the relation and
rows are instances of specific relational statements. In-
dividual rows can be referenced by their PRIMARY KEY, a
subset of attributes (columns), which is part of a table’s
definition and which uniquely identifies a given row. (This
decouples the physical layout of the data from their or-
ganization.) SQL has a notion of virtual tables or VIEWs,
which is very helpful, for example, when different repre-
sentations of the same underlying data are needed. The
standard way to extract data from an SQL database is to
use a SELECT query. Modern RDBMS also support the no-
tion of (user-defined) indexes to speed up queries as well
as stored procedures, which resemble methods in the scope
of a class in OOP.

A. Modeling Geometry and Unstructured Grids in RDBMS

Assume that one would like to convert one’s favorite file
format into a relational database. Database schema design
can be compared to object oriented design in that it also
requires a fair amount of creativity, experience and good
judgement. Let’s look at a simple example. Assume that
our file contains, among other things, a tetrahedral mesh.
It’s very likely that those tetrahedra are stored as quadru-
ples (v0, v1, v2, v3) of vertex identifiers (e.g., FAST [12]) and
based upon this representation, we could go ahead and cre-
ate tables using SQL as follows:

CREATE TABLE Vertices
(

id int PRIMARY KEY CHECK(id >= 0),
x float NOT NULL,
y float NOT NULL,
z float NOT NULL

)

CREATE TABLE Tetrahedra
(

v0 int NOT NULL REFERENCES Vertices(id),
v1 int NOT NULL REFERENCES Vertices(id),
v2 int NOT NULL REFERENCES Vertices(id),
v3 int NOT NULL REFERENCES Vertices(id),
CONSTRAINT PK_Tetrahedra
PRIMARY KEY (v0, v1, v2, v3)

)

We enforce referential integrity by referencing the vertex
identifiers in the table of vertices and thereby prevent, for
example, the insertion of tetrahedra with invalid vertex ids.
(We could add additional constraints to prevent the inser-
tion of degenerate tetrahedra, for which two or more ver-
tices coincide.) What kind of information could we derive
from such a table? Given a vertex v, how many adjacent
tetrahedra are there and what are they? For the former,
the following query would yield the desired answer:

SELECT COUNT(*)
FROM Tetrahedra
WHERE v0 = ’v’ OR v1 = ’v’

OR v2 = ’v’ OR v3 = ’v’



www.manaraa.com

3

This looks a little awkward, and the awkwarndess becomes
painfully obvious if we ask a similar question for edges:
Given an edge (v0, v1), how many adjacent tetrahedra are
there and what are they? For each tetrahedron, there are
quite a few cases to consider in order to determine the ad-
jacency of a given edge. In general, neither the quadruples
nor the pairs will be sorted, which makes it only worse.
(Notice that the question about adjacent tetrahedra for an
edge is not of purely academic interest. It naturally ap-
pears, for example, in the context of error estimation and
adaptive mesh refinement.)

Experts in relational databases will point out that our
Tetrahedra table violates the so-called first normal form
(1NF) of relations [4], [23], which, in this example, forbids
more than one occurrence of the Vertex attribute in the
Tetrahedron relation. (“Normal forms are an attempt to
make sure that you do not destroy true data or create false
data.” [4]) Here is a standard fix:

CREATE TABLE Tetrahedra
(

id int PRIMARY KEY,
attributes varchar(50)

)

CREATE TABLE VerticesOfTetrahedron
(

tet_id int REFERENCES Tetrahedra(id),
vtx_id int REFERENCES Vertices(id),
vtx_rk int NOT NULL,
CONSTRAINT PK_VerticesOfTetrahedron
PRIMARY KEY (tet_id, vtx_id),

CONSTARINT CHK_VerticesOfTetrahedron
CHECK (vtx_rk BETWEEN 0 AND 3)

)

We traded the compact quadruple notation for the rather
verbose representation in VerticesOfTetrahedron. Be-
cause of the PRIMARY KEY constraint, only non-degenerate
tetrahedra can be added to the table. The vtx rk column
is used to store the ordinal position of a vertex in a tetra-
hedron. The CHECK constraint limits the ordinal position
to the correct range. (What is not enforced in this repre-
sentation is that there must be exactly four rows for each
tetrahedron, which, however, can be easily verified with
a simple query.) The query which counts the number of
tetrahedra adjacent to edge (v0, v1) can now be expressed
as a simple self-join:

SELECT COUNT(DISTINCT A.tet_id)
FROM

VerticesOfTetrahedron AS A
JOIN
VerticesOfTetrahedron AS B
ON A.tet_id = B.tet_id

WHERE A.vtx_id = ’v0’ AND B.vtx_id = ’v1’

How do we recover the quadruple representation? We could
define a VIEW or simply say:

SELECT vtx_id

FROM VerticesOfTetrahedron
ORDER BY tet_id, vtx_rk

The purpose of this example was to heighten the aware-
ness that there is not always a straight path that leads from
formatted files to tables in a relational database. Even
more caution is necessary in the normalization process. It
is not, as it may appear, a purely mechanical process, but
is driven by various design goals, your favorite queries, as
well as, other performance considerations.

The careful definition of appropriate indexes [9] is crucial
for fast data access, but beyond the scope of this short
discussion.

B. User Interfaces and APIs

For a nice overview of the evolution of (Microsoft) data-
access technologies we refer the reader to [18].

ODBC [21] and OLE DB [22] are among the most com-
mon database interfaces. The APIs have language bind-
ings for C (ODBC) or C++ (OLE DB), and often are also
available as modules for scripting languages like Python
(ODBC) or Perl (DBD::Sybase [31]). By modern soft-
ware standards and considering ease of use, neither ODBC
nor OLE DB is a particularly satisfying solution for the
user: They should be your last resort rather than your
first choice.

JDBC [17] is a pretty interface with ODBC type func-
tionality confined to the Java programming language. It
lacks features like disconnected data sets and a clear isola-
tion of data sets from data sources.

Databases stored in Microsoft SQL Server 2000 can also
be accessed over HTTP (query as part of the URL), XML
templates (via HTTP), XPath queries [15] or SOAP [29].

ADO.NET is the latest development in a series of
database interfaces developed by Microsoft. ADO.NET
clearly separates database access from data manipulation.
DataSets are in memory copies of tables, relationships and
constraints of a data source. A DataSet is disconnected
from any data source, which means that no persistent con-
nection needs to be maintained and synchronization (up-
date) with the data source can occur whenever convenient.
The truth is, a DataSet does not know anything about a
data source’s nature, if it is a single or multiple databases or
an XML file. A DataSet stores certain metadata and sup-
ports array-like indexing and strong typing. The mediator
between DataSet and data source is called DataAdapter.
(This approach is good OOP practise and similar to the
approach taken in the C++ Standard Template Library,
where iterators connect containers and algorithms.) A
Connection object handles connections to the data store
and Command objects can be used to execute queries against
data stores. Finally, a DataReader offers stream-like, fast
forward, read-only access to a data source. The collection
of Connection, Command, DataAdapter and DataReader is
called managed providers and managed providers come in
3 flavors:
• SQL Server – for SQL Server 7.0 or later
• OLE DB – for SQL Server 6.5 or earlier, Oracle and
Microsoft Access



www.manaraa.com

4

Prediction

Fracture
Analysis

Boundary
Conditions

FRANC3D

Errors
Estimate Iterative

Solution

Introduce
Flaws

Unstructured
Refinement

Structured
Refinement

Increase Order of
Basis Functions

YES
NO

Acceptable
Error?

Volume
Mesh

Finite
Element

Formulation

Solid
ModelCrack

Propagation
Live

Fig. 1. CPTC simulation loop.

• ODBC – “for everything else”.
XML figures prominently in ADO.NET, but a discussion
is beyond the scope of this brief overview.

In all our implementations, described below, we use
ADO.NET’s SQL Server .NET data provider defined in the
System.Data.SqlClient namespace of the .NET frame-
work.

III. Case Study

In this section, we show some preliminary results for a
simple computational mechanics application; we solve the
equations of linear elasticity for a spiral bevel gear model
and a polycrystal.

A. The CPTC environment

The CPTC environment was developed for NSF’s Crack
Propagation on Teraflop Computers (CPTC) project [8]
at Cornell University. Figure 1 is a schematic of a life-
time analysis that can be done with CPTC. CPTC sup-
ports non-manifold topologies and watertight geometries of
polynomial Bézier curves and patches. The supported fi-
nite element shapes are tetrahedra, hexahedra, prisms and
pyramids. Originally, the input data (geometry, bound-
ary conditions, mesh) were stored as ASCII or XDR [34]
files. The file size, obviously, depends on the topological
and geometric complexity of the underlying model, as well
as the capabilites of the employed mesh generator. The
size of the geometry file, typically, does not exceed a few
hundred kilobytes to a few megabytes. The mesh file, on
the other hand, can grow almost without limits and is often
several hundred megabytes large. There is an augmented
version of the mesh format for parallel distributed memory
computing, which accounts for partitioning, sharing and
ownership of grid entities.

A.1 Changes to CPTC

First of all, the models are no longer stored in files, but
in a RDBMS, Microsoft SQL Server 2000, in this case.

The schema of the underlying database has about 25 ta-
bles representing the topological decomposition, geometry
(parametrized curves and patches) and tesselation (ver-
tices, tetrahedra etc.).

In the previous version of CPTC, a mesh would be par-
titioned at runtime by invoking METIS [19]. In contrast,
the set of tetrahedra is now stored in the database as a
partitioned set. The partitioning is fixed by the time the
database is created and it is generated from a space-filling
curve (Hilbert curve) [28], [14]. Depending on the size of
the underlying mesh, the set is split into a maximum num-
ber of partitions – 128 in the examples below – and if there
are fewer processors available at runtime, the smaller parti-
tions are dynamically combined into larger partitions. For
example, MPI process 0 would issue the following SELECT
command to retrieve its subset of tetrahedra, if there were
only 16 MPI processes total:

SELECT * FROM Tetrahedra
WHERE partition BETWEEN 0 AND 7

Obviously, we exploit the locality-preserving nature of
space-filling curves to ensure that this combination pro-
cess yields reasonable partitions. The partition column
is used to define an appropriate clustered index [9] to speed
up the (MPI) client queries, which typically involve only
data in the scope of a partition.

The read routines for the solution phase now reduce to
a few lines of code, basically a few SQL queries (strings).

Another set of changes deals with post-processing. The
visualization routines (Python and VTK) now talk directly
to the database and steering capabilities can be easily im-
plemented as dynamical SQL query generation.

Fracture analysis, including stress intensity factor (SIF)
calculation and new crack front prediction, was previously
performed directly after the solver. Even if a model con-
tains multiple cracks, the parallelism in SIF calculations is
negligible and the subset of data required is marginal com-
pared to the size of the entire model. What is expensive
(and not problem-oriented) is to extract the relevant data
(geometry, mesh and displacements near the crack front)
and it seemed natural to do this after the solver, since all
data, though scattered across multiple nodes, were present
in memory. With a RDBMS as a backend, the fracture
analysis can be easily done as a decoupled standalone ap-
plication that retrieves only the data necessary.

Adaptive unstructured re-meshing and quality assess-
ment is much easier to do when the model resides in an
RDBMS.

B. System Configuration

The results shown in subsection III-C were obtained us-
ing the following configuration:
• A cluster of 64 DELL PowerEdge 1550 servers with two
Pentium III@1 GHz, 256 KB L2-cache per processor, 2 GB
RAM per node and Giganet interconnect running Win-
dows 2000 Advanced Server (SP2), Microsoft .NET Frame-
work, and MPIPro 1.6.3,



www.manaraa.com

5

MPI processes 8 16 32 64 128

Read Time (s) 5.00 5.30 6.47 9.30 14.44
Solve Time (s) n/a 1,901.73 955.21 470.44 250.37
Write Time (s) n/a 18.26 18.26 18.26 18.26

TABLE I

Sample results for a for a gear model.

• A single DELL PowerEdge 2450 server with two Pen-
tium III@600 MHz, 256 KB L2-cache per processor, 1 GB
RAM, running Windows 2000 Advanced Server (SP2) and
a single instance of SQL Server 2000 (SP2).
• The cluster is connected to the database server over stan-
dard 100 MBit ethernet.

C. Results

Our sample application performs the following steps:
1. Using mpirun we invoke a simple ADO.NET client
for each MPI process, which reads this processes sets of
tetrahedra, nodes, shared nodes and boundary conditions
(Dirichlet and Neumann), and writes them to a node’s local
harddisk.
2. mpirun then invokes the program dealing with finite el-
ement formulation and assembly, and finally PETSc’s [24],
[2] SLES package is called to solve the underlying equa-
tions.
3. After the solve is complete the results are written to MPI
process 0’s local harddrive and written back by another
ADO.NET client to the database.
In this application, no interaction with the database occurs
during the solve. Since all the results are gathered first by
MPI process 0, the time for writing the data to the database
does not depend on the number of clients.

C.1 Gear Model

A model of spiral bevel gear was created using
OSM/FRANC3D [7] and discretized using the JMESH [20]
mesh generator. The underlying finite element mesh con-
sists of 193,405 T10-elements (10-noded tetrahedra) result-
ing in a system with 835,851 degrees of freedom. The
amount of data to be read from the database is about 7 MB.

In Table I, results are shown for a fixed problem size
varying the number of clients. The solve times (including
formulation, node numbering and assembly) are provided
to put the read/write results in perspective. (The RAM of
8 nodes is not sufficient to formulate/solve the underlying
system of equations.)

C.2 Polycrystal Model

A model of 100 grain polycrystal was created using
the Digital Material Toolkit [10] and discretized using the
QMG [25] mesh generator. The underlying finite element
mesh consists of 1,519,816 T10-elements resulting in a sys-
tem with 6,271,419 degrees of freedom. The amount of
data to be read from the database is about 70 MB.

In Table II, results are shown for a fixed problem size
varying the number of clients. The solve times (including

MPI processes 8 16 32 64 128

Read Time (s) 22.54 23.25 23.23 23.48 25.47
Solve Time (s) n/a n/a n/a 3669.28 3019.22
Write Time (s) n/a n/a n/a 143.00 143.00

TABLE II

Sample results for a polycrystal model.

formulation, node numbering and assembly) are provided
to put the read/write results in perspective.

D. Discussion

The dataset underlying Table II is about ten times as big
as the one from Table I. Nevertheless, the performance, e.g.
the effective bandwidth, for different numbers of clients is
better for the larger database. The overhead for connec-
tion management exceeds the data transfer time for small
datasets. The updates are fairly slow. A linked server (see
Section IV) can improve this somewhat, but it remains a
problem.

Overall we spend about 10% of the total execution time
for I/O, which is an acceptable number and comparable to
file based approaches, when factoring in the partitioning
time etc. There is plenty of room for improvements: some
of the data in the database can be easily recalculated and
this is preferable if it significantly cuts down on the amount
of data that is read/written at runtime.

The use of clustered indexes clearly pays off. With too
many clients a single database server becomes a bottleneck
and a single point of failure. The scenario outlined above
is clearly inadequate for hundreds of MPI clients. In the
next section we describe how to deal with the problem of
scaling out.

This simple example highlights only the part that is criti-
cal for the solution process. Typically, finite element appli-
cations have extensive pre- and postprocessing phases (er-
ror analysis, visualization) which operate on small (chang-
ing) subsets of data. This is a major source of non-problem-
oriented code in applications, and this is where the power
of SELECT and the superior interoperability of an RDBMS
come to bear.

The migration from a file based environment to a
RDMBS was relatively straightforward. Besides code re-
duction we had to add some code as “glue” for those appli-
cations that do not (yet) talk directly to the database, but
via a Python or C# wrapper. The overall design is one of
greater modularity and robustness.

Having our models in a database, makes it a lot easier to
read and write data in third party formats. For instance, it
is fairly straightforward to create a script that writes parts
of or an entire model in a given format. This approach
is certainly preferable to maintaining a zoo of conversion
routines.

Caution: We do not claim that using databases is ap-
propriate in every sitution. They are probably not appro-
priate when the ultimate level of performance is the goal
and very high development costs are budgeted. Also, if the



www.manaraa.com

6

underlying data are regular and structured and no data-
mining type functionality is needed, not much benefit can
be expected from an RDBMS beyond the transactional ca-
pabilities and interoperability.

IV. Future Work

We will leverage the fact that our application uses
databases in order to investigate the following:
• Scalability,
• Fault-tolerance,
• Distributed computing and Web services.

All current generation commercial RDBMS from vendors
like IBM, Microsoft or Oracle support SMP architectures
with some form of multiprocessing or multithreading. One
can either run multiple instances of the RDBMS in one
SMP and/or rely on the server engine’s ability to extract
parallelism from the queries and dynamically spawn pro-
cesses or threads. Scalability can be enhanced and through-
put increased by adding faster processors, more memory,
faster disks and so on. This scale-up approach is restricted
by the inherent limitations of the SMP model, the ability
of the server engine to extract parallelism, as well as the
bandwith and latency limits of the network interface(s). If
we plan on serving hundreds of MPI processes off a (logi-
cally) single large database, it is rather unlikely that SMP-
type scalability will be sufficient. (If the database to be
served is relatively small, we could just replicate it across
multiple servers and this solution would be, except for up-
dates, almost infinitely scalable.) With distributed parti-
tioned views [9] Microsoft’s SQL Server 2000 supports the
notion of data partitioned over multiple servers. Roughly
speaking, a distributed partitioned view makes data resid-
ing in tables across multiple servers appear as if they come
from a single table. With this scale-out approach, almost
linear scalability can be achieved, assuming that the data
easily lend themselves to partitioning. For an excellent dis-
cussion of the technical details we refer the reader to [3].
Related results will be reported elsewhere.

We have begun to deploy many of our applications as
Web services [29]. Mesh generation and solver components,
for example, are good candidates for such services. How-
ever, the potentially large input data and/or return objects
do not fit the simple “given the zip code, return temper-
ature” picture. There are problems related to scheduling,
data staging, discovery, transfer and transformation that
need to be addressed. Given their interoperability char-
acteristics we think that traditional RDBMS and “virtual
databases” like Astrolabe [26] are poised to fill in this gap.
Using this paradigm, as a proof-of-concept we plan to de-
ploy a distributed simulation involving chemically reacting
flows, heat transfer and fracture mechanics in late summer
this year.

V. Conclusions

In addition to being competitive with file based ap-
proaches, RDBMS offer a key advantage: they yield a dra-
matic reduction of non-problem-oriented code. With SQL
as a data definition language it is easy to ensure consistency

of data and their referential integrity. On the other hand,
since SQL is a powerful data manipulation language, it
is cheap to prototype and change data-access API’s (SQL
commands are just human readable strings.) A greater
level of fault tolerance, high availability and interoperabil-
ity comes on top of that (without additional coding). De-
pending on the nature and size of the underlying data,
different approaches like replication or partitioning can be
taken to achieve scalability. Files remain indispensible as
temporary storage, but are completely inadequate as per-
sistent and intelligent storage for building distributed ap-
plications around large datasets.

Acknowledgments

The authors would like to thank Jim Gray of Microsoft
Research for his support and many helpful suggestions. We
gratefully acknowledge the support of Microsoft Research,
Dell, Microsoft and Intel.

References

[1] ITR/ASP: Adaptive Software Project Home Page,
http://www.erc.msstate.edu/ jcollins/ITR/index.html

[2] Satish Balay et al., PETSc Users Manual, ANL-95/11 - Revision
2.1.1, Argonne National Laboratory, 2001.

[3] Itzik Ben-Gan and Tom Moreau, Advanced Transact-SQL for
SQL Server 2000, Apress, 2000.

[4] Joe Celko, SQL for Smarties: Advanced SQL Programming, Mor-
gan Kaufmann Publishers, 2000.

[5] Paul Chew, Proposal for Database Schema for ASP Geometries,
Cornell University, January 2002.

[6] Paul Chew, Proposal for Database Schema for ASP Generalized
Meshes, Cornell University, January 2002.

[7] Cornell Fracture Group Home Page,
http://www.cfg.cornell.edu/software/CFG software.html

[8] Crack Propagation on Teraflop Computers,
http://www.tc.cornell.edu/Research/CMI/CrackProp/index.asp

[9] Kalen Delaney, Inside Microsoft SQL Server 2000, Microsoft
Press, 2001.

[10] Digital Material Toolkit, http://www.tc.cornell.edu/Research/
CompMatSci/Multiscale/DigitalMaterial/

[11] Jack J. Dongarra and David W. Walker, The Quest for Petascale
Computing, Computing in Science and Engineering, May/June
2001, IEEE 2001.

[12] Flow Analysis Software Toolkit (FAST),
http://www.nas.nasa.gov/Software/FAST/

[13] Ben Forta, Sams Teach Yourself SQL in 10 Minutes, Sams,
2001.

[14] Michael Griebel and Gerhard Zumbusch, Hash-Storage Tech-
niques for Adaptive Multilevel Solvers and Their Domain Decom-
position Parallelization, Contemporary Mathematics, Vol. 218,
1998.

[15] John Griffin, XML and SQL Server 2000, New Riders Publish-
ing, 2001.

[16] Gerd Heber, David Lifka and Paul Stodghill, Post-Cluster Com-
puting and the Next Generation of Scientific Applications, To
appear, 2002.

[17] JDBC Technology, http://java.sun.com/products/jdbc/
[18] Wei-Meng Lee, The Evolution of Data-Access Technologies, SQL

Server Magazine, Vol. 4, No. 4, pp. 28–34, April 2002.
[19] METIS: Family of Multilevel Partitioning Algorithms,

http://www-users.cs.umn.edu/ karypis/metis/
[20] J. B. Cavalcante Neto et al., An Algorithm for Three-

Dimensional Mesh Generation for Arbitrary Regions with Cracks,
Engineering with Computers (2001) 17, 75–91.

[21] ODBC 3.0 Software Development Kit and Programmer’s Ref-
erence, Microsoft Press, 1997.

[22] Microsoft OLE DB, http://www.microsoft.com/data/oledb/ de-
fault.htm

[23] Michael Otey and Paul Conte, SQL Server 2000 Developer’s
Guide, Osborne/McGraw-Hill., 2001.

[24] PETSc home page, http://www.mcs.anl.gov/petsc/



www.manaraa.com

7

[25] QMG 2.0 home page, http://www.cs.cornell.edu/Info/People/
vavasis/qmg2.0/qmg2 0 home.html

[26] Robbert van Renesse and Kenneth Birman, Astro-
labe: A Robust and Scalable Technology for Distributed
System Monitoring, Management and Data Mining,
http://www.cs.cornell.edu/Info/Projects/Spinglass/public pdfs/
Astrolabe.pdf

[27] David F. Rogers, An Introduction to NURBS With Historical
Perspective, Morgan Kaufmann Publishers, 2001.

[28] Hans Sagan, Space-Filling Curves, Springer-Verlag, 1994.
[29] Web Services, http://www.w3.org/2002/ws/
[30] W. Z. Strang, Cobalt60: User’s Manual, Air Force Research

Laboratory, Wright-Patterson AFB, OH, September 2000.
[31] Andrew Trice, Connect to Microsoft SQL 2000 with the Perl

Sybase Module, LINUX Journal, April 2002, pp. 62–65.
[32] Steve Vavasis, Proposal for Geometric Representation, Cornell

University, October 2001.
[33] Steve Vavasis, Proposal for Boundary Condition and Material

Property Representation, Cornell University, October 2001.
[34] XDR: External Data Representation Standard,

http://www.faqs.org/rfcs/rfc1014.html
[35] Extensible Markup Language (XML),

http://www.w3.org/XML/


